

DATE: January 27, 2026

NAME: Asif

DATE OF BIRTH: January 24, 1992

REF: 1632 -US-YC-ED-CBC

COUNTRY: India

EVALUATION TYPE

- Education Report

ANALYSIS METHODOLOGY

- Year-count, as described in the Statement of Evaluation section

US EQUIVALENCY

- High school diploma
- Bachelor of Science degree in Electrical Engineering with an emphasis in Communication Systems

COUNTRY OVERVIEW

Primary education in India currently has a duration of eight years, followed by two years of lower secondary studies and two years of upper secondary studies. At the end of Standard XII/Grade 12, students receive the Higher Secondary Certificate, Senior School Certificate, or an equivalent award. The first university undergraduate degree in India is the three- to four-year bachelor's degree, which is followed by a two-year master's degree.

EVALUATION

Credential 1

Authentication: Original records verified by IEE
 Country: India
 Admission requirement: Completion of Year 8
 Program duration: 2 years
 Program completion: 2009
 Field(s) of study: General academic
 Issuing institution: Maharashtra State Board of Secondary and Higher Secondary Education
 Institution status: Regionally accredited
 US equivalency: Completion of Grade 10

Credential 2

Authentication: Original records verified by IEE
 Country: India
 Admission requirement: Completion of Year 10
 Program duration: 2 years
 Program completion: 2011
 Field(s) of study: General academic
 Issuing institution: Maharashtra State Board of Secondary and Higher Secondary Education
 Institution status: Regionally accredited
 US equivalency: High school diploma

Credential 3

Authentication: Original records verified by IEE
 Country: India
 Admission requirement: High school diploma
 Program duration: 4 years
 Period of study: 2012-2016
 Program completion: 2016
 Field(s) of study: Electronics and telecommunication engineering
 Issuing institution: Savitribai Phule Pune University
 Institution status: Regionally accredited
 Grade Point Average: 2.78
 US equivalency: Bachelor of Science degree in Electrical Engineering with an emphasis in Communication Systems

COURSE - BY - COURSE ANALYSIS

Bachelor of Engineering, 2012-2016

Courses Presented		Grade	Credits
Semester I	: Engineering Mathematics I	C	2.25
	: Applied Science I (PP)	B	2.25
	: Applied Science I (TW)	A	0.50
	: Fundamentals of Programming Languages	B	1.25
	: Basic Electrical Engineering (PP)	C	2.25
	: Basic Electrical Engineering (TW)	A	0.50
	: Basic Civil and Environmental Engineering (PP)	C	2.25
	: Basic Civil and Environmental Engineering (TW)	A	0.50
	: Engineering Graphics I	C	2.25
	: Manufacturing Practices	A	0.50
Semester II	: Engineering Mathematics II	C	2.25
	: Applied Science II (PP)	B	2.25
	: Applied Science II (TW)	A	0.50
	: Engineering Mechanics (PP)	C	2.25
	: Engineering Mechanics (TW)	A	0.50
	: Basic Electronics Engineering (PP)	B	2.25
	: Basic Electronics Engineering (TW)	A	0.50
	: Engineering Graphics II	A	1.25
	: Basic Mechanical Engineering (PP)	C	2.25
	: Basic Mechanical Engineering (TW)	A	0.50
Semester III	: Signal and Systems (PP)	C	2.25
	: Signal and Systems (OR)	A	1.25
	: Solid States Devices and Circuits (PP)	C	2.25
	: Solid States Devices and Circuits (PR)	C	1.25
	: Network Analysis	C	2.25
	: Digital Logic Design (PP)	C	2.25
	: Digital Logic Design (PR)	B	1.25
	: Power Devices and Machines	B	2.25
	: Network and Power Laboratory	A	1.25
	: Electronic Instruments and Tools	A	1.25
Semester IV	: Engineering Mathematics III (PP)	C	2.25
	: Engineering Mathematics III (TW)	A	0.50
	: Integrated Circuits Applications (PP)	C	2.25
	: Integrated Circuits Applications (PR)	A	1.25
	: Electromagnetic (PP)	C	2.25
	: Electromagnetic (TW)	A	0.50
	: Data Structures (PP)	B	2.25
	: Data Structures (PR)	C	1.25
	: Communication Theory (PP)	C	2.25
	: Communication Theory (OR)	A	1.25
Semester V	: Circuit Simulation and Tools	A	1.25
	: Control Systems	C	2.25
	: Digital Communication (PP)	C	2.25
	: Digital Communication (PR)	B	1.25
	: Network Synthesis and Filter Design (PP)	C	2.25
	: Network Synthesis and Filter Design (TW)	A	1.25
	: Microcontrollers and Application (PP)	C	2.25
	: Microcontrollers and Application (PR)	A	1.25

Courses Presented	Grade	Credits
Semester VI	: Digital Signal Processing (PP)	C 2.25
	: Digital Signal Processing (OR)	A 1.25
	: Electronic Design Practice	A 1.25
	: Signal Coding and Estimation Theory (PP)	C 2.25
	: Signal Coding and Estimation Theory (PR)	A 1.25
	: System Programming and Operating System (PP)	C 2.25
	: System Programming and Operating System (TW)	A 1.25
	: Computer Organization and Architecture	C 2.25
	: Industrial Management	C 2.25
Semester VII	: Wave Theory and Antenna (PP)	C 2.25
	: Wave Theory and Antenna (PR)	C 1.25
	: Mini Project and Seminar	A 1.25
	: Test and Measurement Techniques	B 1.25
	: VLSI Design and Technology	B 2.25
	: Computer Networks	C 2.25
	: Microwave Engineering	C 2.25
	: Digital Image Processing	C 2.25
	: Electronic Product Design	B 2.25
Semester VIII	: Laboratory Practice I (CN and MWE) (TW)	A 1.25
	: Laboratory Practice I (CN and MWE) (OR)	A 1.25
	: Laboratory Practice II (VLSI and Elect. I) (TW)	A 1.25
	: Laboratory Practice II (VLSI and Elect. I) (PR)	A 1.25
	: Project Phase I	A 1.25
	: Mobile Communication	B 2.25
	: Broadband Communication System	C 2.25
	: Audio Video Engineering	A 2.25
	: Wireless Networks	B 2.25
	: Laboratory Practice III (MC and BCS) (TW)	A 1.25
	: Laboratory Practice III (MC and BCS) (OR)	A 1.25
	: Laboratory Practice IV (Elective III) (TW)	A 1.25
	: Laboratory Practice IV (Elective III) (PR)	A 1.25
Total	: Project Phase II (TW)	A 2.25
	: Project Phase II (PR)	A 1.25

Grade Point Average is 2.78 based on a 4-point scale with A=4, B=3, C=2, D=1, F=0.

STATEMENT OF EVALUATION

IEE evaluations and assessments are based on the judgment of evaluators experienced in international education, a review of current literature, and documentation provided. We are members of NACES (National Association of Credential Evaluation Services), AACRAO (American Association of Collegiate Registrars and Admissions Officers), TAICEP: The Association for International Credential Evaluation Professionals, and NAFSA: Association of International Educators. The evaluation methodologies used at IEE include both year-counting and benchmarking—a detailed description of both models is available on our website. Implementation of these is dependent upon the report's purpose and the receiving organization. IEE will prioritize years of full-time study as foundational to the equivalency determination for immigration and licensure purposes, as well as for reports created for specific colleges and universities which have opted out of benchmarked equivalencies. For most education and employment reports, however, IEE will prioritize academic and professional access, curriculum rigor, and contact hours as central to the equivalency determination. This evaluation is simply advisory and is in no way binding on any institution, agency, or organization, each of which has the authority to make decisions that it chooses regarding the application of this analysis.

*****This is the final line of this report, nothing follows*****